公众号 微博 菜单
格拉茨技术大学新发现助力开发环保型超级电容器

导语:超级电容器的充电周期约为100万次,而且特别环保、成本效益高、不可燃且易于回收。
盖世汽车讯 与电池类似,超级电容器适用于重复储存电能。据外媒报道,格拉茨技术大学(Tu Graz)的研究人员提出一种特别安全的可持续性超级电容器。
目前,锂离子电池 技术的主要缺点在于缺乏安全性、可持续性和可回收性,以及原材料(例如钴)供应有限。在寻找替代电化学储能 系统用于电动出行和存储可再生能源的过程中,将电池和电容器组合在一起构成的“混合超级电容器”前景颇佳。它的充放电速度与电容器一样快,并且几乎可以储存与传统电池一样多的能量。与传统电池相比,它可以更快、更频繁地充放电,锂离子电池的使用寿命只有几千次,而超级电容器的充电周期约为100万次。
这种混合超级电容器的可持续性高,由碳和碘化钠电解液组成,并带有正极电池电极和负极超级电容器电极,但是此前并未得到充分开发。格拉茨技术大学的研究人员进行了更为详细的研究,探讨这种超级电容器的电化学储能工作原理,以及碳电极的纳米级孔隙中发生的具体情况。主要研究人员Christian Prehal表示:“我们研究的系统由纳米多孔碳电极和碘化钠电解液组成,也就是盐水。因此,该系统特别环保、成本效益高、不可燃且易于回收。”
借助于小角度X射线散射和拉曼光谱,研究人员首次证明,充电时电池电极的碳纳米孔中形成固体碘纳米颗粒,这些颗粒在放电时再次溶解。Christian Prehal表示:“纳米孔中固体碘的填充程度决定了电极中可以存储多少能量。碘碳电极将所有的化学能储存在固体碘粒子中,因此其储能能力可以达到非常高的水平。”这项新基础知识为开发混合超级电容器或电池电极开辟了道路,使其具有无与伦比的高能量密度和极快的充放电过程。在过去几年中,研究人员Qamar Abbas已成功对这种混合电容器进行研究和进一步开发。
经过有针对性的改进,现在混合超级电容器可以作为一种固定电能储存替代方案使用,而且安全、不易燃、成本低和可持续。例如,对于私人家庭的光伏电池储能而言,这是很有吸引力的选择。
在拉曼光谱中,研究人员利用光与物质相互作用来观测材料的结构或性质。通过小角度X射线散射(SAXS),可以观察到电化学反应中的结构变化。这两种方法都是现场原位操作,即在专门开发的电化学电池的充放电过程中进行现场操作。
Prehal表示:“在电子显微镜和纳米分析研究所(FELMI)和格拉茨技术大学软物质应用实验室,首次在具有NaI电解液的混合超级电容器上进行现场原位拉曼光谱和现场原位SAXS。为了研究现场原位SAXS,我们开发了一种用于电池和电化学储能装置的特殊测量电池。”研究结果表明,现场原位SAXS非常适合在纳米尺度上跟踪超级电容器或电池的结构变化,并且可以在充放电过程中直接操作。因此,这种新的研究方法在电化学储能领域具有广阔的应用前景。